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Algebraic Circuits with Oracles

Figure: −6(−2x · f(y, 3))− xy+7f(y, 3)

We have two measures of complexity:

• Size: The number of edges
• Depth: The length of the

longest input-output path



Circuit Complexity for Ideals

In algebraic complexity, we are interested in characterizing the circuit
complexity of some family of polynomials.

Definition
Fix some polynomials g1(x), . . . , gk(x) ∈ F[x].
The ideal generated by g1(x), . . . , gk(x) is the set of combinations

⟨ g1, . . . , gk ⟩ =

{
k∑

i=1

hi(x) · gi(x)

∣∣∣∣∣ hi(x) ∈ F[x]

}
.

Question
Suppose f ∈ ⟨ g1, . . . , gk ⟩. How does the complexity of f compare to the
complexity of the generators g1, . . . , gk?



Principal Ideals

Example
The principal ideals are generated by a single polynomial g.
If f ∈ ⟨ g ⟩, then g is a factor of f .

Question
Suppose f ∈ ⟨ g ⟩. Does g have a small f -oracle circuit?



Principal Ideals

Conjecture ([Bür00, Conjecture 8.3])

If g is a factor of f , size(g) ≤ poly(size(f),deg(f)).

Theorem ([Bür04, Theorem 1.3])

Over fields of characteristic 0, g can be border computed by a circuit of
size poly(size(f),deg(f)).

By border computation, we mean the circuit computes the following:

g(x) + εq g̃(x, ε) ∈ F(ε)[x], q ≥ 1.

Question
Can we deborder this result, that is can we remove this ε approximation?



Closure Results in Determinantal Ideals

Example
Consider an n×m matrix X = (xi,j) of variables. Let Idetn,m,r be the
determinantal ideal generated by the r × r minors of X.

Conjecture ([Gro20, Conjecture 6.3])

Let f ∈ Idetn,n,n/2 be a nonzero polynomial. Then there is a constant depth
f -oracle circuit of size poly(n) that computes the t× t determinant for
some t = nΘ(1).



Closure Results in Determinantal Ideals

Theorem ([AF22, Theorem 1.1])

Let f ∈ Idetn,m,r be a nonzero polynomial. Then there is a depth-three
f -oracle circuit of size O

(
n2m2

)
that border computes the t× t

determinant for some t = Θ
(
r1/3

)
.

Question
Can we deborder this result, that is can we remove this ε approximation?



Closure Results in Determinantal Ideals

Theorem ([DG25, Theorem 1.5])

Let f ∈ Idetn,m,r be a nonzero polynomial. Then there is a depth-three
f -oracle circuit of size poly(n,m, deg(f)) that exactly computes the t× t
determinant for some t = Θ

(
r1/3

)
.

Main Tools:

• We use Straightening Laws from Invariant Theory to express f(x) in
a standard basis indexed by combinatorial objects, and leverage the
combinatorics to talk about specific terms.

• To get a circuit for a specific basis term, we use Homogenization as
well as the Isolation Lemma.



Homogenization

Definition

Consider a degree d polynomial g(x, t) =
∑d

i=0 coeffti(g)t
i.

Lemma (Folklore)
Say g is computed by a size s, depth ∆ f -oracle circuit with top Σ-gate.

Then, we can compute coeffti(g) by a size
O (ds), depth ∆ f -oracle circuit.



Issues with Homogenization

If a circuit border computes g(x), then it computes

g(x) + εq g̃(x, ε)

for some q ≥ 1.

Idea: Homogenize with respect to ε.

Problem: q can be arbitrarily large

=⇒ Homogenization gives large circuit.



Isolation Lemma
In our proof, we have a specific monomial in g(x) we want to isolate.

Lemma ([KS01, Lemma 4])

Linear programs with random cost functions will have a unique minimum.

Moreover, if the linear equations have bounded integer coefficients, then
evaluation at small, random values has a unique minimum.



Isolating Monomials
Lemma ([DG25, Corollary 2.27])

Consider a polynomial g(x1, . . . , xℓ) such that the individual degree of
each xi in g is at most K:

g(x1, . . . , xℓ) =
∑
e∈L

cex
e1
1 · · ·xeℓℓ .

Randomly choose z1, . . . , zℓ and define a morphism

xi 7→ wzi , g 7→
∑
e∈L

ce · w
∑ℓ

i=1 eizi .

The Isolation Lemma shows that the z1, . . . , zℓ can be choose to be small
=⇒ unique lowest degw-term =⇒ homogenization w.r.t w is small.



Thank You!

If I am to speak ten minutes, I need a week for preparation; if fifteen minutes, three

days; if half an hour, two days; if an hour, I am ready now.

— Woodrow Wilson

Slides can be found on my site anakin.phd

https://anakin.phd/
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